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Abstract— In this paper, we present the methodology and
results for a real-time velocity trajectory optimization for a
solar-powered autonomous surface vessel (ASV), where we
combine indirect optimal control techniques with iterative
learning. The ASV exhibits cyclic operation due to the nature
of the solar profile, but weather patterns create inevitable
disturbances in this profile. The nature of the problem results in
a formulation where the satisfaction of pointwise-in-time state
of charge constraints does not generally guarantee persistent
feasibility, and the goal is to maximize information gathered
over a very long (ultimately persistent) time duration. To
address these challenges, we first use barrier functions to tighten
pointwise-in-time state of charge constraints by the minimal
amount necessary to achieve persistent feasibility. We then use
indirect methods to derive a simple switching control law, where
the optimal velocity is shown to be an undetermined constant
value during each constraint-inactive time segment. To identify
this optimal constant velocity (which can vary from one segment
to the next), we employ an iterative learning approach. The
result is a simple closed-form control law that does not require
a solar forecast. We present simulation-based validation results,
based on a model of the SeaTrac SP-48 ASV and solar data
from the North Carolina coast. These simulation results show
that the proposed methodology, which amounts to a closed-form
controller and simple iterative learning update law, performs
nearly as well as a model predictive control approach that
requires an accurate future solar forecast and significantly
greater computational capability.

I. INTRODUCTION

The collection of oceanographic data supports numerous
applications: ocean currents inform marine energy site selec-
tion [1], surface temperature data enhances weather forecasts
[2], and salinity measurements improve understanding of
climate processes [3]. Current observation methods include
moored and boat-mounted sensors [4], [5], high-frequency
radar [6], and undersea gliders [7], [8], but these platforms
typically yield sparse or short-duration measurements.

To obtain spatially granular and long-duration oceano-
graphic data, these traditional methods must be augmented
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Fig. 1. SeaTrac ASV considered in this work [10]. Image used with
permission.

with persistent and autonomous observation systems. Renew-
ably powered marine robots, such as sailing drones [9] and
solar-powered autonomous surface vessels (ASVs) [10], offer
this capability by combining mobility with long-duration
operation.

In this work, we consider the long-duration deployment
of a solar-powered ASV (shown in Fig. 1) in a dynamic
ocean environment. We treat distance traveled as a proxy
for information, and aim to compute a velocity trajectory
that maximizes this distance over a mission horizon, subject
to energetic constraints imposed by battery capacity and
time-varying solar input. Our previous work addressed this
using a model predictive control (MPC) framework [11],
which approximated the infinite-horizon objective with a
finite-horizon optimization and a heuristic terminal reward.
However, tuning the reward function was largely trial-and-
error, performance degraded with solar forecast errors, and
the real-time computational load was significant, especially
for stochastic MPC formulations.

To address these limitations, we adopt indirect methods
from optimal control theory to derive necessary conditions
for velocity trajectories that are provably optimal, even under
time-varying solar resource availability and battery state-of-
charge (SOC) constraints. This study has two main goals: (1)
to use insight from Pontryagin’s Minimum Principle (PMP)
to interpret and benchmark MPC behavior, and (2) to derive a
control strategy that approximates MPC performance while
eliminating forecast dependence and significantly reducing
tuning and computational demands.

Prior work in transportation systems, particularly in hybrid
and electric vehicles, has explored finite-horizon energetic
optimization [12], often using PMP [13]. However, these



methods generally result in boundary-value problems in-
volving unknown costates that are difficult to resolve. For
cyclically operating systems, iterative learning control (ILC)
has been applied to estimate these parameters [14].

Given the diurnal periodicity of solar energy, a PMP+ILC
approach is well-suited to ASV trajectory optimization.
However, unlike cyclic systems in prior work, our problem
features day-to-day variability in solar input and requires
a notion of persistent feasibility, where satisfying SOC
constraints at time t guarantees feasibility at all future times.
This critical issue is not addressed in existing literature.

To this end, we first introduce minimally tightened SOC
constraints using a barrier function approach that guar-
antees persistent feasibility across time. We then apply
PMP to derive necessary conditions for optimality, revealing
that the optimal velocity is piecewise constant whenever
SOC constraints are inactive. Since PMP does not directly
yield the value of this constant velocity, which can vary
across constraint-inactive intervals, we propose an ILC-based
method to iteratively estimate it.

Using a high-fidelity model of the SeaTrac SP-48 ASV, we
benchmark our method against three strategies: (1) a constant
velocity that ensures energy balance over the mission, (2) the
MPC approach developed in [11], and (3) an upper-bound
benchmark assuming no SOC constraints. Simulations using
real solar irradiance data from North Carolina show that
our ILC-based controller achieves comparable performance
to MPC without relying on forecasts or incurring heavy
computation.

In summary, our contributions are:
• A barrier function formulation to derive minimally

tightened SOC constraints that guarantee persistent fea-
sibility;

• An indirect optimal control formulation that yields a
piecewise constant optimal control law;

• An iterative learning approach to estimate the optimal
control input in unconstrained intervals;

• A comprehensive comparison with constant-velocity
and MPC-based strategies in a realistic simulation en-
vironment.

II. MODEL & OPTIMIZATION PROBLEM

A. Optimal Control Formulation

The ASV velocity control problem to maximize distance
traveled is posed as a fixed-final-state, free-final-time optimal
control problem:

min
u(t)

J =

∫ tf

0

−u(t) dt (1)

subject to:

ḃ(t) = Pin(t)− kh − kmu(t)3 (2a)
b(tf ) = b(0) (2b)
bmin ≤ b(t) ≤ bmax t ∈ [0, tf ] (2c)
umin ≤ u(t) ≤ umax t ∈ [0, tf ] (2d)

Fig. 2. Idealized solar irradiance profile from Eqn. 3

Here, u(t) is the ASV velocity, b(t) is the battery state
of charge (SOC), and Pin(t) is the incoming solar energy.
The constants kh and km represent hotel load and motor
energy consumption, respectively. Limits bmin, bmax and
umin, umax define feasible SOC and velocity ranges.

All simulations use parameters from the SeaTrac SP-48
vehicle (Table I).

TABLE I
SEATRAC SP-48 PARAMETERS

Variable Name Symbol Value Units
Hotel Load kh 10 W

Motor Constant km 83 kg ·m−1

Minimum SOC bmin 0 Wh
Maximum SOC bmax 6500 Wh
Minimum Speed umin 0 m · s−1

Maximum Speed umax 2.315 m · s−1

B. Solar Irradiance Model

We evaluate performance under both idealized and real so-
lar irradiance profiles. The idealized model enables analysis
in a controlled setting, while the real data assesses robustness
in real-world conditions.

The idealized irradiance model, adapted from [15], is:

Pin(t) = max

(
0, D0(t) +D1(t) cos

(
2πt

T

))
(3)

where D0(t) is the average irradiance, D1(t) is the oscil-
lation amplitude, and T (typically 24 hours) is the period.
Both D0(t) and D1(t) depend on latitude and time of year.
For simplicity, we fix the ASV along the latitude of Cape
Hatteras, North Carolina. A sample profile is shown in Fig. 2.

However, this model does not account for variability
due to weather (e.g., cloud cover). To capture real-world
disturbances, we also use ERA5 reanalysis data for solar
irradiance at Cape Hatteras in 2022 [16], shown in Fig. 3.



Fig. 3. Measured solar irradiance at Cape Hatteras in 2022

Fig. 4. Energy deficit curve

III. OPTIMAL CONTROL FORMULATION:
BARRIER FUNCTIONS & INDIRECT METHODS

We derive a simple expression for the optimal velocity
trajectory in two steps. First, we construct barrier functions
that minimally tighten the SOC constraints to ensure persis-
tent feasibility. Second, we apply indirect methods to derive
necessary conditions showing that the optimal velocity is
constant during each constraint-inactive interval.

A. Barrier Functions for Persistent Feasibility

The constraints in Eqns. 2a–2d do not guarantee that
satisfying SOC constraints at time t ensures feasibility at
later times. For example, if b(t) = bmin and solar input
drops to zero, the constant hotel load kh will cause SOC to
fall below bmin, violating the state constraint.

To guarantee persistent feasibility, we reformulate the state
constraints into time-varying barrier functions.

Starting with the lower SOC bound, we define the energy
deficit assuming u(t) = 0:

ϵ−(t) =

∫ t

t0

(kh − Pin(τ)) dτ (4)

Fig. 5. Energy surplus curve

We then define the lower SOC barrier as:

ϵ†−(t) = ϵ−(t)− ϵ−(t1) (5)

bl(t1) =

 sup
t2∈[t1,tf ]

ϵ†−(t2), if sup > 0

0, otherwise
(6)

where t1 is the current time at which we are evaluating the
barrier function, representing the “starting point”, and t2 ∈
[t1, tf ] is a time representing some time in the future.

For the upper SOC bound, we define the energy surplus
assuming u(t) = umax:

ϵ+(t) =

∫ t

t0

(Pin(t)− kh − kmu3
max) dt (7)

Then, the upper SOC barrier is:

ϵ†+(t) = ϵ+(t)− ϵ+(t1) (8)

bu(t1) =

 sup
t2∈[t1,tf ]

ϵ†+(t2), if sup > 0

0, otherwise
(9)

From Eqns. 6 and 9, we define the time-varying SOC
constraint:

bl(t) ≤ b(t) ≤ bu(t) (10)

B. Indirect Methods for Deriving the Optimal Velocity Pro-
file

With the reformulated constraints in place, we apply
indirect optimal control to derive a key structural result.

Lemma 1: When bl(t) < b(t) < bu(t) (i.e., constraints
are inactive), the optimal velocity u∗(t) is constant.

Proof: We augment the system to include a penalty
state x2(t) for constraint violations:

⃗̇x =

[
ḃ(t)
ẋ2(t)

]
=

[
Pin(t)− kh − kmu(t)3

b2 1(−b) + (bmax − b)2 1(bmax − b)

] (11)

where 1 is the Heaviside step function.



Fig. 6. SOC barrier functions define time-varying upper/lower SOC bounds
guaranteeing persistent feasibility.

The corresponding Hamiltonian is:

H(t, x, u, p) = −u+ p1(Pin − kh − kmu3) (12)

+p2((bu − b)21(b− bu) + (b− bl)
21(bl − b))

where p1, p2 are the co-states. The co-state dynamics
follow:

ṗ1 = −2p2(bu − b)1(b− bu) + p2(bu − b)2δ(b− bu)

+ 2p2(b− bl)1(bl − b) + p2(b− bl)
2δ(bl − b) (13)

ṗ2 = 0 (14)

When constraints are inactive, all 1 and δ terms vanish,
so ṗ1 = 0 and p1 is constant. Setting ∂H

∂u = 0 yields:

u∗ =


umax, b ≥ bu(t)

umin, b ≤ bl(t)√
−1

3kmp1
, otherwise

(15)

Since p1 is constant when constraints are inactive, u∗ must
also be constant, completing the proof.

Eqn. 15 and Lemma 1 yield a compact characterization of
the optimal control law. However, p1 (and thus the optimal
velocity) can vary between constraint-inactive intervals and
is not directly known. In the next section, we describe an
ILC-based method to estimate p1.

IV. REAL-TIME REALIZATION OF THE OPTIMAL
VELOCITY PROFILE THROUGH ITERATIVE

LEARNING

The previous section has established that the optimal
velocity control strategy is a switching one, where the
optimal velocity is constant during each constraint-inactive
interval. Two complications arise from the aforementioned
analysis. First, the actual controller must be implemented in
sampled (discrete) time, in the presence of sensor noise. In
such a scenario, a switching controller is prone to significant
chatter, which must be mitigated for the resulting controller
to be practical. Secondly, while the previously derived theory
establishes that the optimal velocity is constant during each

Fig. 7. Block diagram demonstrating the iterative approach to learning the
optimal constant speed.

constraint-inactive interval, it does not establish the optimal
value of that constant velocity. This section addresses both
of these complications.

A. Discretization

When we discretize time, the switching controller will
chatter as the SOC barrier functions go from active to
inactive (and vice versa). This chatter will be further com-
plicated in actual experimental implementations where the
SOC measurement is corrupted by noise. To address these
complications, we modify the control solution to include the
“buffer” shown in Eqn. 16:

u(t) =



b(t)−bl(t)
δ u∗(t) +

(
1− b(t)−bl(t)

δ

)
umin

when 0 < b(t)− bl(t) < δ
bu(t)−b(t)

δ u∗(t) +
(
1− bu(t)−b(t)

δ

)
umax

when 0 < bu(t)− b(t) < δ

(16)

where δ is a tunable parameter that represents the width
of the buffer in Watt-hours and u∗ represents the optimal
unconstrained velocity.

B. Iterative Learning

To compute the optimal value of p1 (which is known
to be constant during each constraint-inactive interval but
otherwise unknown), and thus the value of the commanded
velocity, we utilize an iterative learning approach as depicted
in Fig.7. To do this, we begin with an initial guess of p1, then
update the estimate for this co-state value as per the update
laws defined in Eqns. 17 and 18. We define each iteration
i to be a 24-hour period (one solar cycle). The update law
is given in two parts. The first of these parts is a once-per-
iteration update law given by:

ui+1 = ui + kp(b
i(tf )− bides) (17)

where kp is a proportional learning gain that acts upon
the difference between the SOC at the end of iteration
(represented by bi(tf )) and the desired terminal state of



Fig. 8. Costate vs iteration under a consistent day-to-day solar irradiance
profile. This simulation demonstrates convergence of the ILC algorithm
under consistent solar conditions.

charge (bides). This update is applied at the end of each
iteration (day).

The second part of the update law represents a continuous
rate-based update law that is given by:

ui(t+ 1) = ui + kd(b
i(t)− bi−1(t)) (18)

where kd is a rate-based gain that acts upon the difference
between the current SOC and the SOC at the same time in
the previous iteration (day). This update is then applied to the
velocity from the same time in the previous iteration. This
update law is applied continually following the first iteration
and serves as a “damping” term on the control updates.

To demonstrate the convergence of the above strategy to
an optimal costate value p1, we apply the strategy to a
simulation where the environmental conditions are repeated
across each iteration. The results of this simulation are shown
in Fig. 8, and the velocities corresponding to the costate
values are shown in Fig.9. From these figures, we can see
that the costate converges to the optimal value in under 15
iterations for kp = 5×10−5 and kd = 1×10−5. This optimal
costate value is p1 = −0.0012, which corresponds to a speed
of u = 1.83 m · s−1.

In the following section, we demonstrate the performance
of the proposed control strategy against other comparison
strategies in simulation.

V. RESULTS

To benchmark the performance of the proposed controller,
we compare it against the performance of other strategies in
simulation.

A. Comparison Strategies

As an initial basis for comparison, we compute the con-
stant velocity for which the energy expended over a one-
year simulation duration is exactly equal to the solar energy
available. To do this, we solve the below equation for u:∫ tf

0

kmu3dt =

∫ tf

0

Pin(t)dt (19)

Fig. 9. Optimal Velocity vs iteration under a consistent day-to-day solar
irradiance profile. This simulation demonstrates convergence of the ILC
algorithm under consistent solar conditions.

where km represents a gain that represents the power con-
sumed by the ASV’s motor, u is the constant velocity of the
ASV, and Pin(t) is the energy produced by the ASV from
the solar resource from times 0 to tf . We allow the ASV
to travel at this velocity without being subject to the SOC
constraints to establish the upper limit on ASV performance.
Note that this is not in fact a tight upper bound, as the ASV
will be subject to SOC constraints in reality.

As a second comparison control strategy, we implement
the aforementioned constant-velocity strategy only when the
tightened SOC constraints are inactive. During periods in
which the previously computed constant velocity would lead
to violation of tightened SOC constraints, the velocity is set
to the lower or upper limit in order to satisfy the constraint
at equality.

Finally, our indirect methods + ILC strategy and the two
comparison strategies described above are compared with an
MPC strategy as implemented in [11].

To evaluate these strategies, we considered two simulation
scenarios, where we seek to maximize the distance traveled
by the ASV over a mission period of one year. In the first
scenario, the idealized solar irradiance model was used as
the energetic resource. In the second scenario, ERA5 data
for Cape Hatteras was used [16].

B. Simulation Results

For the simulations performed under the idealized solar
resource profile, from Fig. 10, we can see that the proposed
learning controller outperforms the constant velocity bench-
marks, while nearly matching the performance of MPC. It is
noteworthy that the MPC implementation is based on a solar
resource forecast, and this forecast is assumed to be perfect
for the purpose of optimization. The ILC-based approach
does not require any forecast and performs almost identically
under the idealized solar resource model. The daily-averaged
velocity and SOC are plotted against time in Figs. 11 and
12. Figs. 11 and 12 illustrate an increased level of volatility
in the ILC approach, as ILC attempts to learn the optimal



Fig. 10. Distance traveled vs. time under the idealized solar irradiance
model.

velocity. This volatility, however, is not associated with any
appreciable performance reduction.

Similar results can be seen when the algorithms are applied
to the real-world solar irradiance profile. From Fig. 14, we
can see that the ILC-based strategy is particularly sensitive to
the fluctuations in solar irradiance that are present in the real-
world data. This is attributable to the fact that the estimated
optimal velocity value requires time to adjust to day-to-day
variations in solar irradiance due to atmospheric conditions,
whereas the MPC strategy has the benefit of accessing a per-
fect forecast. Accordingly, the state of charge is particularly
volatile as it reacts to the changing velocity and solar profile
as seen in Fig.15. Nevertheless, the ILC approach proposed
in this work nearly matches the MPC performance, even in
the presence of real-world solar fluctuations.

The ILC approach falls just short of the performance levels
yielded by MPC, yet it possesses tremendous advantages.
First, it requires no forecast of the solar resource. Secondly,
the ILC approach does not require the heuristic tuning of
a terminal reward function within a real-time optimization.
Finally, the learning controller is simpler to implement and
requires less computational power. This is due to the fact
that the learning controller only has two gains that must be
tuned for performance, whereas the MPC requires a detailed
model.

The presented strategies were implemented in Julia [17]
and simulated on a computer with an Intel®Xeon®W-2125
4.0 GHZ CPU and 32GB of RAM. For the same year-long
simulation at a time step of 6 minutes, the ILC approach took
roughly 20 seconds to simulate, whereas the MPC strategy
(implemented using the JuMP Ipopt optimizer [18]) took
21 hours and 36 minutes. This demonstrates a significant
improvement in computational efficiency using the presented
ILC approach.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we considered the problem of long-horizon
or persistent velocity trajectory optimization for a solar-
powered autonomous surface vessel (ASV). Because of the

Fig. 11. Velocity vs. time under the idealized solar irradiance model.

Fig. 12. SOC vs. time under the idealized solar irradiance model.

Fig. 13. Distance traveled vs. time under the actual solar irradiance data
for Cape Hatteras.



Fig. 14. Velocity vs. time under the actual solar irradiance data for Cape
Hatteras.

Fig. 15. SOC vs. time under the actual solar irradiance data for Cape
Hatteras.

unique features of this system that do not immediately
guarantee persistent feasibility of pointwise-in-time state
constraints, we constructed barrier functions to tighten these
constraints by the minimum amount required to ensure
persistent feasibility. We then utilized indirect methods to
arrive at a provably optimal switching control law, where
we subsequently used iterative learning control (ILC) to
obtain estimates of the optimal constant velocity during each
constraint-inactive interval. Using real solar data and a model
of the SeaTrac SP-48 ASV, we showed that this formulation
outperforms simple benchmark strategies. Furthermore, we
showed that the proposed approach nearly matches the
performance of a more complex MPC strategy that requires
a solar forecast while significantly reducing computational
complexity.

In future work, we will focus on replacing our
distance-maximization objective with an actual information-
maximization mechanism. Furthermore, we will focus on
combining velocity trajectory optimization with path plan-
ning, all with the goal of maximizing information gathered.
Finally, we will focus on experimentally validating the
developed control algorithms on the SP-48 ASV presently

in our possession.
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